The geodesic approximation for lump dynamics and coercivity of the Hessian for harmonic maps

نویسنده

  • M. Haskins
چکیده

The most fruitful approach to studying low energy soliton dynamics in field theories of Bogomol’nyi type is the geodesic approximation of Manton. In the case of vortices and monopoles, Stuart has obtained rigorous estimates of the errors in this approximation, and hence proved that it is valid in the low speed regime. His method employs energy estimates which rely on a key coercivity property of the Hessian of the energy functional of the theory under consideration. In this paper we prove an analogous coercivity property for the Hessian of the energy functional of a general sigma model with compact Kähler domain and target. We go on to prove a continuity property for our result, and show that, for the CP 1 model on S2, the Hessian fails to be globally coercive in the degree 1 sector. We present numerical evidence which suggests that the Hessian is globally coercive in a certain equivariance class of the degree n sector for n ≥ 2. We also prove that, within the geodesic approximation, a single CP 1 lump moving on S2 does not generically travel on a great circle.

منابع مشابه

Continuous Discrete Variable Optimization of Structures Using Approximation Methods

Optimum design of structures is achieved while the design variables are continuous and discrete. To reduce the computational work involved in the optimization process, all the functions that are expensive to evaluate, are approximated. To approximate these functions, a semi quadratic function is employed. Only the diagonal terms of the Hessian matrix are used and these elements are estimated fr...

متن کامل

Modified Linear Approximation for Assessment of Rigid Block Dynamics

This study proposes a new linear approximation for solving the dynamic response equations of a rocking rigid block. Linearization assumptions which have already been used by Hounser and other researchers cannot be valid for all rocking blocks with various slenderness ratios and dimensions; hence, developing new methods which can result in better approximation of governing equations while keepin...

متن کامل

Harmonic maps relative to α-connections on statistical manifolds

In this paper we study harmonic maps relative to α-connections, and not always relative to Levi-Civita connections, on statistical manifolds. In particular, harmonic maps on α-conformally equivalent statistical manifolds are discussed, and conditions for harmonicity are given by parameters α and dimensions n. As the application we also describe harmonic maps between level surfaces of a Hessian ...

متن کامل

Some geometrical properties of the oscillator group

‎We consider the oscillator group equipped with‎ ‎a biinvariant Lorentzian metric‎. ‎Some geometrical properties of this space and the harmonicity properties of left-invariant vector fields on this space are determined‎. ‎In some cases‎, ‎all these vector fields are critical points for the energy functional‎ ‎restricted to vector fields‎. ‎Left-invariant vector fields defining harmonic maps are...

متن کامل

Extracting Dynamics Matrix of Alignment Process for a Gimbaled Inertial Navigation System Using Heuristic Dynamic Programming Method

In this paper, with the aim of estimating internal dynamics matrix of a gimbaled Inertial Navigation system (as a discrete Linear system), the discretetime Hamilton-Jacobi-Bellman (HJB) equation for optimal control has been extracted. Heuristic Dynamic Programming algorithm (HDP) for solving equation has been presented and then a neural network approximation for cost function and control input ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003